		-	200	
4	2		•	
. 1	12	¥.	Z .	
V	2.0	•		۸

UNIVERSITY OF EDUCATION, WINNEBA

STITUTE FOR TEACHER EDUCATION AND CONTINUING PROFESSIONAL DEVELOPMENT (ITECPD)

4-YR B Ed IN IHS EDUCATION

	THE BLEET IN STIS EDUCATION
END OF FIDET CEMECTED	EVALUE ATTOMO ADDIT ACCE
END OF TIKST SEMESTER	EXAMINATIONS APRIL 2021

Index Number of Candidate:

NAME OF COLLEGE:

Signature:

JBM 232: LEARNING, TEACHING AND APPLYING FURTHER ALGEBRA

TIME ALLOWED: 2HRS 30 MINS

LEVEL: 200

INSTRUCTIONS:

- 1. Attempt all questions in sections A and B and FOUR (4) in section C.
- 2. Each question is followed by four options, A D.
- 3. Write the letter corresponding to the correct answer in the options provided in the answer booklet.
- 4. The total marks for this paper is 40.

SECTION A: ANSWER ALL THE QUESTIONS IN THIS SECTION

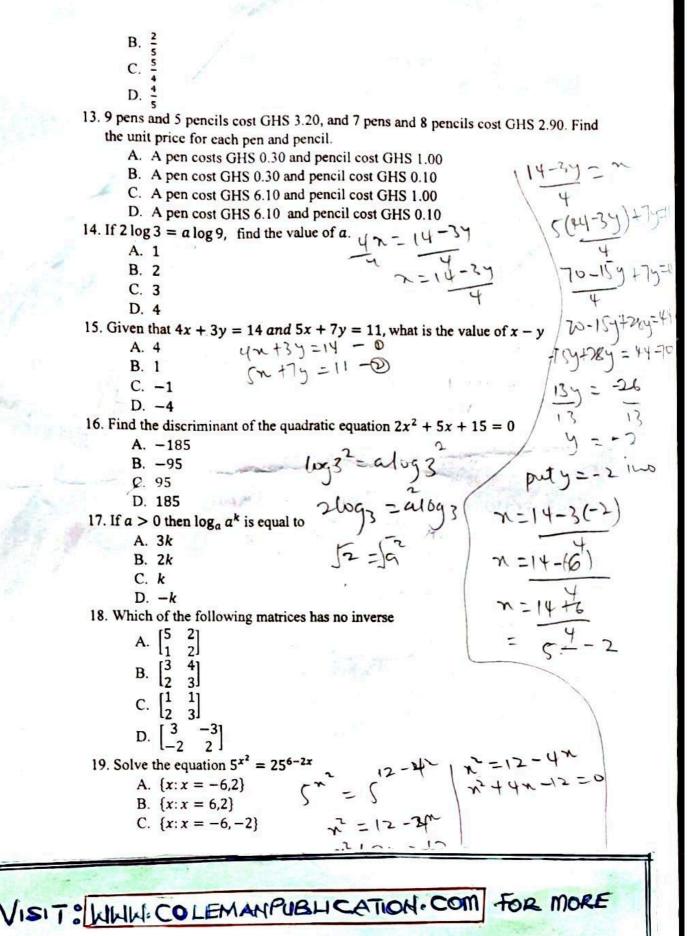
- 1. A binary operation Δ is defined on the set of real numbers by $m\Delta n = m + n \frac{1}{2}$ where $m, n \in R$. Find, under Δ the identity element.
 - A.
 - B. 1

- 2. If 2, m, 50 are consecutive terms of an exponential sequence, what is the value of m? arn
 - A. 25
 - B. 10
 - C. 5
 - D. 15
- 3. Find x such that x 2, x, x + 3 are consecutive terms in geometric progression
 - A. 6
 - B. 5
 - C. 4
- 4. The roots of the quadratic equation $3x^2 + 4x 5 = 0$ are α and β . Find $\frac{1}{\alpha} + \frac{1}{\beta}$
 - A. 4
 - B. 5
 - C.

VISIT: WWW. COLEMANPUBLICATION. COM FOR MORE

VISIT: WHILL COLEMAN PUBLICATION. COM FOR MORE

$$D_{1} = \frac{5}{3}$$


- 5. Given that $\log_{10} 3 = 0.4771$, calculate the values of $\log_{10} 81$
 - A. 0.6990
 - B. 1.9084
 - C. 19.084
 - D. -1.0984
- 6. Solve the logarithmic equation, $log_2(2x + 1) = 3$

 - B. 2
 - C.
 - D. 3

- (0)2(2x+1)= 8 2x+1=8 2x==8-1
- 7. If the determinant of the matrix $\begin{bmatrix} 5 & 3 \\ 4 & x \end{bmatrix}$ is -2, find the value of x
 - A. 3
 - B. 0
 - C. -1
 - D. 2
- 8. Given that $\begin{bmatrix} 1 & 0 \\ 2 & k \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 6 & 3 \end{bmatrix}$ find k. (1x3+0 20)= (1
 - A. 1
 - B 0
 - C. -1
 - D. 3
- 9. The polynomial $f(x) = 2x^3 4x^2 + x 7$ is divided by x 1, find the f(4=20)-40)2+1-7 remainder.
 - A. -14
 - B. 14

 - C. 0
- 10. Simplify $20 \times 8^{2n} - 5 \times 4^{3n+1}$
 - A. 2n+1
 - B. 2
 - C. 0
- 11. Find the value of x that makes the equation $x^{-2} = 9$
 - A. x = -2
 - B. $x = \frac{1}{3}$
 - C. x = 3
 - D. x = 2
- 12. Find the log of 32 to the base 4.
 - A. $\frac{5}{2}$

logy 2 = logy 1 logy 2 logy 2 logy 8

D. $\{x: x = 6, -2\}$

20. For any quadratic equation when $b^2 - 4ac > 0$, we have

- A. Complex roots
- B. Real Distinct Roots
- C. Equal roots
- D. No solution

SECTION B: ANSWER ALL THE QUESTIONS IN THIS SECTION (10 MARKS)

- 1. The binary operation * is defined as $a * b = \frac{a+b}{ab}$ evaluate -3 * 4.
- 2. If $a\Delta b = b\Delta a = e$, where e is the identity element, then b is said to be termed as.......
- 3. Find the series of the AP; $4, 6\frac{1}{2}, 9, 11\frac{1}{2}$
- 4. Calculate the 5th term of the exponential sequence with first term as $\frac{1}{2}$ and common ratio
- 5. Find the quadratic equation whose roots are 1 and 3
- 6. Show that the binary operation $x \odot y = y \odot x$ is **not** commutative.
- 7. A linear sequence A.P has a 7th term of 3 and a 12th term of -7. Find the common difference.
- 9. Each of a succession terms of a geometric progression (GP) is obtained by multiplying the preceding term by a fixed quantity called.....
- 10. A square matrix in which every element if the main diagonal is zero is called.

SECTION C: ANSWER ANY FOUR (4) QUESTIONS OF YOUR CHOICE

- 1. a) Express (210+1)5 in the descending powers of x. b) Use the expression in (a) to evaluate (1.25) leave your answer in three significant figures.
- 2. If $A = \begin{bmatrix} -2 & 4 \\ 5 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 \\ 1 & -3 \end{bmatrix}$, find the values of p and q such that $AB = \begin{bmatrix} p & 1 \\ -3 & -4 \end{bmatrix} + 3 \begin{bmatrix} -1 & -3 \\ 7 & q \end{bmatrix}$ 3. Find the remainder when $-2x^4 + 4x^3 x^2 + 5x + 6$ is divided by x + 4
- 4. The roots of equation $x^2 px + 8 = 0$ are α and β . If the roots differ by 2. Calculate the possible values of p.
- 5, Use determinant to solve the simultaneous equations: 3x + 2y = 3 and 4x + 5y = 11
- 6. Prisoners digging a tunnel managed to dig 4m on the first day. Each day thereafter, they dig only $\frac{5}{8}$ th of the distance of the previous day. How long will the tunnel be by the end of the 8th day? Correct to 2dp.

